4. Construct a triangle $X Y Z$ in which $\angle Y=30^{\circ}, \angle Z=90^{\circ}$ and $X Y+Y Z+Z X=11 \mathrm{~cm}$. Construction Procedure:

The steps to draw the triangle of given measurement is as follows:

1. Draw a line segment $A B$ which is equal to $X Y+Y Z+Z X=11 \mathrm{~cm}$.
2. Make an angle $\angle Y=30^{\circ}$ from the point A and the angle be $\angle \mathrm{LAB}$
3. Make an angle $\angle Z=90^{\circ}$ from the point B and the angle be $\angle \mathrm{MAB}$
4. Bisect $\angle \mathrm{LAB}$ and $\angle \mathrm{MAB}$ at the point X.
5. Now take the perpendicular bisector of the line $X A$ and $X B$ and the intersection point be Y and Z respectively.
6. Join $X Y$ and $X Z$
7. Therefore, $X Y Z$ is the required triangle

8. Construct a right triangle whose base is 12 cm and sum of its hypotenuse and other side is 18 cm .

Construction Procedure:

The steps to draw the triangle of given measurement is as follows:

1. Draw a line segment of base $B C=12 \mathrm{~cm}$
2. Measure and draw $\angle B=90^{\circ}$ and draw the ray $B X$
3. Take a compass and measure $A B+A C=18 \mathrm{~cm}$.
4. With B as centre and draw an arc at the point be D on the ray $B X$
5. Join DC
6. Now draw the perpendicular bisector of the line $C D$ and the intersection point is taken as A.
7. Now join AC
8. Therefore, $A B C$ is the required triangle.

